1/5x^2+4=12

Simple and best practice solution for 1/5x^2+4=12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x^2+4=12 equation:



1/5x^2+4=12
We move all terms to the left:
1/5x^2+4-(12)=0
Domain of the equation: 5x^2!=0
x^2!=0/5
x^2!=√0
x!=0
x∈R
We add all the numbers together, and all the variables
1/5x^2-8=0
We multiply all the terms by the denominator
-8*5x^2+1=0
Wy multiply elements
-40x^2+1=0
a = -40; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-40)·1
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*-40}=\frac{0-4\sqrt{10}}{-80} =-\frac{4\sqrt{10}}{-80} =-\frac{\sqrt{10}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*-40}=\frac{0+4\sqrt{10}}{-80} =\frac{4\sqrt{10}}{-80} =\frac{\sqrt{10}}{-20} $

See similar equations:

| 3/7x+3=1/8 | | 11x+5=6x+3+5x-7 | | 550(36x-99)=30(28x-256) | | 7-x/4=-5 | | -5=7+2v | | (7y+6)+y=2(y+2)+2= | | 3j-11=4j-12 | | 11x+5=6x-15 | | 35-5y=7y-1 | | 40=4v-8 | | 3x-8(5-8x)=8(x-7)+34 | | 350(3+x)=6300 | | -24=4x+14 | | 2(n-5)=90 | | 350(3+x)=5600 | | −9+p=1 | | 7m+45=129 | | m+11+8m+m^2+1+m=3 | | x2=0.01777777778 | | 23x+67+8x=78-9x+30 | | 3u-12=42 | | 42-10x=14x | | 7p+8=11p | | 2x-9=3x-11 | | -5(8x+7)=35-5x | | (6-x)-(x^2-6x+10)=0 | | 25(6+x)=225 | | g+32/8=10 | | -x-9=3x=8 | | 5x2=90 | | 20+9b=56 | | H(t)=-16t2+24t+7 |

Equations solver categories